4

Where are we located !?

Encyclopedia of the Universe (1) Science (1.1) Computer Science (1.1.1) Computer Graphics (1.1.1.a) Geometry Processing (1.1.1.a.a) Mesh Processing (1.1.1.a.a.i) Mesh Repair

EG 2012 Tutorial: Polygon Mesh Repairing - 14.05.2012

Motivation

- demand for digital 3D models is ubiquitous
 - CAD / CAM
 - Simulation
 - Gaming
 - Cultural heritage
 - Medicine
 - Bioinformatics

EG 2012 Tutorial: Polygon Mesh Repairing - 14.05.2012

Motivation

- depending on the application, 3D models need to be:
 - visualized
 - analyzed
 - processed
 - converted
- advanced algorithms in these contexts often have strict requirements on model quality and integrity

EG 2012 Tutorial: Polygon Mesh Repairing - 14.05.2012

Motivation

- polygon meshes are a de facto standard in numerous domains
 - extremely flexible and descriptive supported by

hardware acceleration

• their versatility, at the same time, allows for a variety of defects and flaws in the representation

EG 2012 Tutorial: Polygon Mesh Repairing - 14.05.2012

5

3

Motivation

EG 2012 Tutorial: Polygon Mesh Repairing - 14.05.2012

б

Motivation

Motivation

- *real world* meshes often contain various defects, depending on their origin.
- but many applications assume *ideal* meshes free from defects or flaws.
- *Mesh Repairing* adapts raw mesh models to specific application requirements.

EG 2012 Tutorial: Polygon Mesh Repairing - 14.05.2012

Motivation

Motivation

EG 2012 Tutorial: Polygon Mesh Repairing - 14.05.2012

Motivation

EG 2012 Tutorial: Polygon Mesh Repairing - 14.05.2012

Motivation

EG 2012 Tutorial: Polygon Mesh Repairing - 14.05.2012

13

Motivation

Motivation

Motivation

• complexity of the repair task is often underestimated by non-experts

	pre-processing	simulation	post-processing
EG	2012 Tutorial: Polygon Mesh	Repairing - 14.05.2012	16

Motivation

• complexity of the repair task is often underestimated by non-experts

EG 2012 Tutorial: Polygon Mesh Repairing - 14.05.2012

17

Motivation

· complexity of the repair task is often underestimated by non-experts

EG 2012 Tutorial: Polygon Mesh Repairing - 14.05.2012

Motivation

- complexity of the repair task is often underestimated by non-experts
 - big difference between "looks good" and "is good"
 - reliable handling of all degenerate cases is challenging to implement
 - most repair algorithms focus on certain defect types and ignore or even introduce others

EG 2012 Tutorial: Polygon Mesh Repairing - 14.05.2012

19

Motivation

Motivation

Motivation

Motivation

The Mesh Repair Problem

- given: input mesh / polygon soup M
- find: output mesh M'
 - globally consistent manifold / solid "watertight"
 - tolerance: dist(M,M') < epsilon

EG 2012 Tutorial: Polygon Mesh Repairing - 14.05.2012

Tolerances	Tolerances
• dist(p,q) = p – q	 dist(p,q) = p – q dist(p,S) = min { dist(p,q) ∀q∈S }
EG 2012 Tutorial: Polygon Mesh Repairing - 14.05.2012	25 EG 2012 Tutorial: Polygon Mesh Repairing - 14.05.2012 26
Tolerances	Tolerances
• dist(p,q) = p - q	• dist(p,q) = p – q
 dist(p,S) = min { dist(p,q) ∀q∈S } 	 dist(p,S) = min { dist(p,q) ∀q∈S }
 dist(S,S') = max { dist(p,S')) ∀p∈S } 	 dist(S,S') = max { dist(p,S')) ∀p∈S }
EG 2012 Tutorial: Polygon Mesh Repairing - 14.05.2012	27 EG 2012 Tutorial: Polygon Mesh Repairing - 14.05.2012 28
Tolerances	The Mesh Repair Problem
• dist(p,q) = p − q	 given: input mesh / polygon soup M
 dist(p,S) = min { dist(p,q) ∀q∈S } 	 find: output mesh M' globally consistent manifold / solid
 dist(S,S') = max { dist(p,S')) ∀p∈S } 	"watertight"
• dist(S,S') \neq dist(S',S)	• tolerance: dist(M,M) < epsilon

 Hausdorff distance: max { dist(S,S'), dist(S',S) }

EG 2012 Tutorial: Polygon Mesh Repairing - 14.05.2012

The Mesh Repair Problem

- given: input mesh / polygon soup M
- find: output mesh M'
 - globally consistent manifold / solid "watertight"
 - tolerance: dist(M,M') < epsilon dist(M',M) < delta dist(M',M) > epsilon only at ∂M

EG 2012 Tutorial: Polygon Mesh Repairing - 14.05.2012

31

The Mesh Repair Problem

- given: input mesh / polygon soup M
- find: output mesh M'
 - globally consistent manifold / solid "watertight"
 - tolerance: dist(M,M') < epsilon dist(M',M) < delta dist(M',M) > epsilon only at ∂M

The Mesh Repair Problem

- given: input mesh / polygon soup M
- find: output mesh M'
 - globally consistent manifold / solid "watertight"
 - tolerance: dist(M,M') < epsilon dist(M',M) < delta dist(M',M) > epsilon only at ∂ M
 - faithful normal reconstruction

EG 2012 Tutorial: Polygon Mesh Repairing - 14.05.2012

33

Spurious Geometry

EG 2012 Tutorial: Polygon Mesh Repairing - 14.05.2012

EG 2012 Tutorial: Polygon Mesh Repairing - 14.05.2012

34

32

The Mesh Repair Problem

- given: input mesh / polygon soup M
- find: output mesh M'
 - globally consistent manifold / solid "watertight"
 - tolerance: dist(M,M') < epsilon dist(M',M) < delta dist(M',M) > epsilon only at ∂M
 - faithful normal reconstruction
 - remove spurious geometry

35

Topological Noise

EG 2012 Tutorial: Polygon Mesh Repairing - 14.05.2012

EG 2012 Tutorial: Polygon Mesh Repairing - 14.05.2012

40

Topological Noise

EG 2012 Tutorial: Polygon Mesh Repairing - 14.05.2012

37

The Mesh Repair Problem

- given: input mesh / polygon soup M
- find: output mesh M'
 - globally consistent manifold / solid "watertight"
 - tolerance: dist(M,M') < epsilon dist(M',M) < delta
 - dist(M',M) > epsilon only at ∂M
 - faithful normal reconstruction
 - remove spurious geometry
 - remove topological noise

EG 2012 Tutorial: Polygon Mesh Repairing - 14.05.2012

The Mesh Repair Problem

• the *general* mesh repair problem is genuinely **ill-posed**

The Mesh Repair Problem

• the *general* mesh repair problem is genuinely **ill-posed**

EG 2012 Tutorial: Polygon Mesh Repairing - 14.05.2012

The Mesh Repair Problem

EG 2012 Tutorial: Polygon Mesh Repairing - 14.05.2012

 the *general* mesh repair problem is genuinely **ill-posed**

EG 2012 Tutorial: Polygon Mesh Repairing - 14.05.2012

41

39

The Mesh Repair Problem

• the *general* mesh repair problem is genuinely **ill-posed**

EG 2012 Tutorial: Polygon Mesh Repairing - 14.05.2012

The Mesh Repair Problem

• the general mesh repair problem • the optimal mesh repair method does not is genuinely **ill-posed** (yet) exist • inherent ambiguities (topological & geometrical) • each has advantages and disadvantages • some defects are repaired, others introduced domain knowledge · the input needs to meet certain requirements heuristics • only certain (limited) guarantees about the output are provided interactive user input hence, application context needs to be • all these are application specific ... considered to make the best trade-off. EG 2012 Tutorial: Polygon Mesh Repairing - 14.05.2012 EG 2012 Tutorial: Polygon Mesh Repairing - 14.05.2012 43 44

The Application Perspective

The Application Perspective

The Application Perspective

EG 2012 Tutorial: Polygon Mesh Repairing - 14.05.2012

The Application Perspective

EG 2012 Tutorial: Polygon Mesh Repairing - 14.05.2012

The Application Perspective

- categorization of:
 - defect types
 - upstream applications / data sources
 based on typical defects of output meshes.
 - downstream applications
 based on typical requirements on input meshes.
 - repair approaches
 along with specific requirements and guarantees

EG 2012 Tutorial: Polygon Mesh Repairing - 14.05.2012

The Application Perspective

- based on these criteria and by looking at the combinatorics of
 - upstream application
 - repair algorithm
 - downstream application

guidelines can be derived to find methods well-suited for a specific problem setting

EG 2012 Tutorial: Polygon Mesh Repairing - 14.05.2012

51

Mesh Repair Recipe

- 1. what is the upstream application? \rightarrow determines characteristics and defects of M
- 2. what is the downstream application? \rightarrow determines requirements on M'
- 3. is it actually necessary to repair M?4. does there exist a suitable algorithm?
 - 5. can several methods be combined?
 - 6. otherwise: \rightarrow there is a gap in the state of the art ...

EG 2012 Tutorial: Polygon Mesh Repairing - 14.05.2012

52

50

Tutorial Outline

- defect types
- upstream applications
- downstream applications
- repair approaches
 - local ⇔ global
 - mesh-based \Leftrightarrow volumetric
 - geometrical \Leftrightarrow topological
- repair workflows an example
- discussion & open problems

53

DEFECT TYPES

- We distinguish issues about:
 - Local connectivity
 - "The set of polygons does not represent a combinatorially manifold simplicial complex"
 - Global topology
 - "The overall topological structure (number of components, genus, orientability) is wrong"
 - Geometry
 - "The geometric realization is flawed (holes, gaps, noise, ...)"

DEFECT TYPES

- Local connectivity
 - Isolated vertices
 - "A vertex that is not incident to any edge"
 - Dangling edges
 - "Edges without any incident triangles"
 - Singular edges
 - "Edges with more than two incident triangles"
 - Singular vertices
 - "Vertices with a non-disc neighborhood"

DEFECT TYPES

Global topology
Topological noise

"Tiny spurious handles or tunnels"
"Tiny disconnected components"
"Unwanted cavities"

Orientation

"Incoherently oriented faces"

EG 2012 Tutorial: Polygon Mesh Repairing - 14.05.2012

55

57

DEFECT TYPES

EG 2012 Tutorial: Polygon Mesh Repairing - 14.05.2012

DEFECT TYPES

EG 2012 Tutorial: Polygon Mesh Repairing - 14.05.2012

EG 2012 Tutorial: Polygon Mesh Repairing - 14.05.2012

58

56

DEFECT TYPES

- · Global topology
 - Topological noise
 - "Tiny spurious handles or tunnels"
 - "Tiny disconnected components"
 - "Unwanted cavities"
 - Orientation
 - "Incoherently oriented faces"

DEFECT TYPES

- Geometry
- Holes
 - "Missing pieces within a surface"
 e.g. due to occlusions during capturing
- Gaps
 - "Missing pieces between surfaces"
 e.g. due to inconsistent tessellation routines
- Cracks / T-Junctions
- → Inherently ill-posed
- → Plausible geometry needs to be conceived

EG 2012 Tutorial: Polygon Mesh Repairing - 14.05.2012

DEFECT TYPES DEFECT TYPES Geometry • Degenerate elements Geometry • "Triangles with (near-)zero area" • Besides the absence of (near-)degeneracies, • Self-intersections the general element quality is an important • "Non-manifold geometric realization" characteristic in several applications. Sharp feature chamfering • "Aliasing artifacts due to sampling → Conversion of meshes to meet such pattern" "continuous quality criteria" is the scope of "surface remeshing". Data noise • "Additive noise due to measurement imprecision" EG 2012 Tutorial: Polygon Mesh Repairing - 14.05.2012 EG 2012 Tutorial: Polygon Mesh Repairing - 14.05.2012 61 62

UPSTREAM APPLICATIONS

- Upstream applications (or sources) characterized by:
 - Nature
 - (physical) real-world data <-> (virtual) concepts
 - Approach
 - ... employed to convert data to polygon mesh
- Both aspects can be the source of defects and flaws.

EG 2012 Tutorial: Polygon Mesh Repairing - 14.05.2012

63

UPSTREAM APPLICATIONS

• Nature

- Designed
 - · Basic concept is an abstraction
 - Problems due to:
 - Inaccuracies in the modeling process
 - · Inconsistencies in the description/representation
- Digitized
 - Measurement of real-world phenomenon
 - Problems due to:
 - Measurement inaccuracies Measurement limitations

EG 2012 Tutorial: Polygon Mesh Repairing - 14.05.2012

64

UPSTREAM APPLICATIONS

Nature	noise	holes	gaps	intersections	degeneracies	singularities	topolog. noise	aliasing
Digitized (physical)	Х	Х					Х	Х
Designed (virtual)			Х	Х	х	Х		

UPSTREAM APPLICATIONS

- Approach
 - Tessellation
 - Depth image fusion
 - Raster data contouring
 - Implicit function contouring
 - Reconstruction from points
 - Height field triangulation
 - Solid model boundary extraction

EG 2012 Tutorial: Polygon Mesh Repairing - 14.05.2012

UPSTREAM APPLICATIONS

- Tessellation
 - Gaps, Intersections
 due to deviation from original curved surface
 - (Degeneracies)
 - depending on special case handling in tessellator

EG 2012 Tutorial: Polygon Mesh Repairing - 14.05.2012

67

Image by Andreas Baerentzen

69

UPSTREAM APPLICATIONS

- Depth image fusion
 Intersections
 - (Degeneracies, Singularities)
 - e.g. when using the popular Minolta V910 software

EG 2012 Tutorial: Polygon Mesh Repairing - 14.05.2012

68

UPSTREAM APPLICATIONS

- Raster data contouring
 - Singularities
 - due to ambiguous configurations
 - (Degeneracies)

EG 2012 Tutorial: Polygon Mesh Repairing - 14.05.2012

• If fixed pattern used

UPSTREAM APPLICATIONS

- Implicit function contouring
 Aliasing
 - (Topological noise) if fixed pattern used

EG 2012 Tutorial: Polygon Mesh Repairing - 14.05.2012

UPSTREAM APPLICATIONS

- Reconstruction from points
 - Methods available that do not introduce artifacts not already present in the data.
 - But many others might introduce
 - (Holes) • (Gaps)

• (Aliasing)

- (Topological noise)
- Even if certain sampling criteria are met that would allow for correct reconstruction in theory

UPSTREAM APPLICATIONS

• Height field triangulation

EG 2012 Tutorial: Polygon Mesh Repairing - 14.05.2012

72

UPSTREAM APPLICATIONS

- Solid model boundary extraction
 - Singularities

UPSTREAM APPLICATIONS

Approach	noise	holes	gaps	intersections	degeneracies	singularities	topolog. noise	aliasing
Tessellation			Х	Х	х			
Depth image fusion				Х	х	х		
Raster data contouring					х	Х		
Implicit function contouring					х		х	Х
Reconstruction from points		х	х				х	х
Height field triangulation								
Solid model boundary extract.						Х		

EG 2012 Tutorial: Polygon Mesh Repairing - 14.05.2012

EG 2012 Tutorial: Polygon Mesh Repairing - 14.05.2012

73

DOWNSTREAM APPLICATIONS

• We consider prototypical requirements of a sample of the wide application spectrum

- Visualization
- Modeling
- Rapid Prototyping

EG 2012 Tutorial: Polygon Mesh Repairing - 14.05.2012

- Processing
- Simulation

75

DOWNSTREAM APPLICATIONS

Application Group	noise	holes	gaps	intersections	degeneracies	singularities	topolog. noise	aliasing
Visualization	х	Х	х					х
Modeling		Х	Х		Х	х	х	
Rapid Prototyping		Х	Х	Х		Х		
Processing	Х	Х	Х	х	Х	Х	х	х
Simulation	Х	Χ	Х	Χ	Х	Х	Х	х

EG 2012 Tutorial: Polygon Mesh Repairing - 14.05.2012

76

74

REPAIR APPROACHES

- We distinguish between two types:
 - Local:
 - Handling defects individually by local modifications.
 - Low invasiveness, but only few guarantees.
 - Global:
 - Typically based on a complete remeshing.
 - High robustness, but often loss of detail.
 - More plausible ambiguity resolution possible.

LOCAL APPROACHES Gap closing

EG 2012 Tutorial: Polygon Mesh Repairing - 14.05.2012

Gaps – Nature and origin

- Between connected components of a mesh; made of separated chains of edges
- Produced by tessellation, round-off, conversion errors, inaccurate trimming, ...
- Usually long and narrow
- Most methods match gap boundaries by considering their spatial proximity

EG 2012 Tutorial: Polygon Mesh Repairing - 14.05.2012

79

81

Proximity-based approaches

- Merge vertices within a prescribed distance [RW92]
 - · to re-unite displaced but equivalent vertices.

EG 2012 Tutorial: Polygon Mesh Repairing - 14.05.2012

Proximity-based approaches

- Merge vertices within a prescribed distance [RW92]
 - to re-unite displaced but equivalent vertices.

EG 2012 Tutorial: Polygon Mesh Repairing - 14.05.2012

Proximity-based approaches

- Merge vertices within a prescribed distance [RW92]
 - to re-unite displaced but equivalent vertices.

EG 2012 Tutorial: Polygon Mesh Repairing - 14.05.2012

82

80

Proximity-based approaches

- Merge vertices within a prescribed distance [RW92]
 - to re-unite displaced but equivalent vertices.

EG 2012 Tutorial: Polygon Mesh Repairing - 14.05.2012

83

Proximity-based approaches

- Merge vertices within a prescribed distance [RW92]
 - to re-unite displaced but equivalent vertices.

EG 2012 Tutorial: Polygon Mesh Repairing - 14.05.2012

- Merge vertices within a prescribed distance [RW92]
 - to re-unite displaced but equivalent vertices.

85

87

EG 2012 Tutorial: Polygon Mesh Repairing - 14.05.2012

Proximity-based approaches

- Progressively "zip" pairs of boundary edge chains [SM95], [BK97]
 - Better control over topology.

EG 2012 Tutorial: Polygon Mesh Repairing - 14.05.2012

Proximity-based approaches

- Progressively "zip" pairs of boundary edge chains [SM95], [BK97]
 - Better control over topology.

EG 2012 Tutorial: Polygon Mesh Repairing - 14.05.2012

Proximity-based approaches

- Progressively "zip" pairs of boundary edge chains [SM95], [BK97]
 - Better control over topology.

EG 2012 Tutorial: Polygon Mesh Repairing - 14.05.2012

88

86

Proximity-based approaches

- Progressively "zip" pairs of boundary edge chains [SM95], [BK97]
 - Better control over topology.

EG 2012 Tutorial: Polygon Mesh Repairing - 14.05.2012

89

Proximity-based approaches

- Progressively "zip" pairs of boundary edge chains [SM95], [BK97]
 - Better control over topology.

- Progressively "zip" pairs of boundary edge chains [SM95], [BK97]
 - Better control over topology.

EG 2012 Tutorial: Polygon Mesh Repairing - 14.05.2012

91

Proximity-based approaches

- Progressively "zip" pairs of boundary edge chains [SM95], [BK97]
 - Better control over topology.

EG 2012 Tutorial: Polygon Mesh Repairing - 14.05.2012

Proximity-based approaches

- Progressively "zip" pairs of boundary edge chains [SM95], [BK97]
 - Better control over topology.

EG 2012 Tutorial: Polygon Mesh Repairing - 14.05.2012

Proximity-based approaches

- Progressively "zip" pairs of boundary edge chains [SM95], [BK97]
 - Better control over topology.

"Stitching"

EG 2012 Tutorial: Polygon Mesh Repairing - 14.05.2012

94

92

Proximity-based approaches

- Progressively "zip" pairs of boundary edge chains [SM95], [BK97]
 - Better control over topology.

"Stitching"

95

93

Proximity-based approaches

- Progressively "zip" pairs of boundary edge chains [SM95], [BK97]
 - Better control over topology.

"Stitching"

- Progressively "zip" pairs of boundary edge chains [SM95], [BK97]
 - Better control over topology.

EG 2012 Tutorial: Polygon Mesh Repairing - 14.05.2012

97

Proximity-based approaches

- Progressively "zip" pairs of boundary edge chains [SM95], [BK97]
 - Better control over topology.

"Stitching"

EG 2012 Tutorial: Polygon Mesh Repairing - 14.05.2012

Proximity-based approaches

- Progressively "zip" pairs of boundary edge chains [SM95], [BK97]
 - Better control over topology.
 - Start from closest pairs to resolve ambiguities.

EG 2012 Tutorial: Polygon Mesh Repairing - 14.05.2012

99

Proximity-based approaches

- Progressively "zip" pairs of boundary edge chains [SM95], [BK97]
 - Better control over topology.
 - Start from closest pairs to resolve ambiguities.

EG 2012 Tutorial: Polygon Mesh Repairing - 14.05.2012

100

98

Proximity-based approaches

- Progressively "zip" pairs of boundary edge chains [SM95], [BK97]
 - Better control over topology.

EG 2012 Tutorial: Polygon Mesh Repairing - 14.05.2012

• Start from closest pairs to resolve ambiguities.

101

Proximity-based approaches

- Progressively "zip" pairs of boundary edge chains [SM95], [BK97]
 - Better control over topology.
 - Start from closest pairs to resolve ambiguities.

- Progressively "zip" pairs of boundary edge chains [SM95], [BK97]
 - Better control over topology.
 - Start from closest pairs to resolve ambiguities.

EG 2012 Tutorial: Polygon Mesh Repairing - 14.05.2012

103

Proximity-based approaches

- Progressively "zip" pairs of boundary edge chains [SM95], [BK97]
 - Better control over topology.
 - Start from closest pairs to resolve ambiguities.

EG 2012 Tutorial: Polygon Mesh Repairing - 14.05.2012

104

Proximity-based approaches

- Progressively "zip" pairs of boundary edge chains [SM95], [BK97]
 - Better control over topology.
 - Start from closest pairs to resolve ambiguities.

EG 2012 Tutorial: Polygon Mesh Repairing - 14.05.2012

Advanced Gap Closing

 Several gaps may cross and meet
 globally optimal matching of (parts of) boundary curves [BS95] instead of greedy

Negative Gaps

• Consider also "negative gaps", i.e. overlapping patches, by clipping and merging [TL94]

Negative Gaps

• Consider also "negative gaps", i.e. overlapping patches, by clipping and merging [TL94]

EG 2012 Tutorial: Polygon Mesh Repairing - 14.05.2012

105

EG 2012 Tutorial: Polygon Mesh Repairing - 14.05.2012

Negative Gaps

• Consider also "negative gaps", i.e. overlapping patches, by clipping and merging [TL94]

EG 2012 Tutorial: Polygon Mesh Repairing - 14.05.2012

Issues of pairwise boundary stitching

- pairwise processing does not introduce singular edges
- some gaps remain when only reasonably resolvable into a non-manifold mesh
- Thus, some methods allow to produce non-manifolds to be able to close all the gaps [BNK02]
- Dynamic selection of zipping or stitching depending on gap width [PMR05]

EG 2012 Tutorial: Polygon Mesh Repairing - 14.05.2012

109

Negative Gaps

• Consider also "negative gaps", i.e. overlapping patches, by clipping and merging [TL94]

EG 2012 Tutorial: Polygon Mesh Repairing - 14.05.2012

110

Advanced Gap Closing

- Gaps may not be bounded by boundary edges
 - More general detection and resolution needed
 - Hybrid approach [BK05]
 Remeshing in voxels surrounding the gaps
 - Output guaranteed intersection-free

EG 2012 Tutorial: Polygon Mesh Repairing - 14.05.2012

112

Summary Table – Gap Closing

Algorithm	Input requirements	Parameters	Potential new flaws
[Rock and Wozny 1992]	Very small gaps	Gap width	Intersections, degen., singularities
[Sheng and Meier 1995]	-	Gap width	Intersections, degen.
[Barequet and Kumar 1997]	-	Gap width	Intersections, degen.
[Turk and Levoy 1994]	Overlap	Gap threshold	Intersections, degen.
[Borodin et al. 2002]	-	-	Intersections, degen., singularities
[Patel et al. 2005]	-	-	Intersections, degen., singularities
[Bischoff and Kobbelt 2005]	-	Gap width, resolution	Degeneracies

EG 2012 Tutorial: Polygon Mesh Repairing - 14.05.2012

LOCAL APPROACHES Hole Filling

¹¹¹

Hole Filling

- Early methods detect holes by looking for closed loops of boundary edges
- These "simple" holes can be patched by triangulating their boundary loops

EG 2012 Tutorial: Polygon Mesh Repairing - 14.05.2012

115

3D Polygon Triangulation

- Heuristics:
 Minimal area, minimal dihedral angles
- Greedy triangulation [вw92; мD93; VPK05; Rw97]
- Find optimum by Dynamic Programming [BS95; Lie03]
- Too coarse for large holes
- Some 3D polygons cannot be triangulated without self-intersections

EG 2012 Tutorial: Polygon Mesh Repairing - 14.05.2012

Beyond Triangulation

- For large holes, insert additional vertices within the triangulation while trying to:
 - meet Delaunay criterion [PS96]
 - reproduce the sampling density and achieve normal continuity [Lie03]
 - consider internal angles, dihedral angles, and areas [WWP10]
- Dynamic programming rather inefficient for very large holes (e.g. in high-res scans)

EG 2012 Tutorial: Polygon Mesh Repairing - 14.05.2012

```
117
```

Beyond Triangulation

EG 2012 Tutorial: Polygon Mesh Repairing - 14.05.2012

118

116

Beyond Triangulation

EG 2012 Tutorial: Polygon Mesh Repairing - 14.05.2012

Beyond Triangulation

- For large holes, insert additional vertices within the triangulation while trying to:
 - meet Delaunay criterion [PS96]
 - reproduce the sampling density and achieve normal continuity [Lie03]
 - consider internal angles, dihedral angles, and areas [WWP10]
- Dynamic programming rather inefficient for very large holes (e.g. in high-res scans)

Other approaches

- Advancing front with Poisson equation [ZGL07]
- Radial Basis Functions [BPB06]
- NURBS fitting [KSI*07]
- Curvature energy minimization [Lev03; PMV06]
- Moving Least Squares projection [WO07; TC04]
- Often robustness issues due to required boundary region parameterizations, hole boundary flattenings, control point setup, etc.

EG 2012 Tutorial: Polygon Mesh Repairing - 14.05.2012

121

Self-intersections

- When additional vertices are inserted, methods may try to create intersectionfree patches
 - [TC04] After each triangle insertion check for intersections. Might fail in producing the complete patch.
 - [WLG03] Randomized optimization by simulated annealing. Less failures, but still no guaranteed convergence to any plausible result.

EG 2012 Tutorial: Polygon Mesh Repairing - 14.05.2012

122

Issues

- · Potentially new intersections
- Holes might have complex topologies
 - The algorithms cited consider one loop at a time. Not suitable for e.g. holes with "islands"

EG 2012 Tutorial: Polygon Mesh Repairing - 14.05.2012

123

Issues

- Potentially new intersections
- Holes might have complex topologies
 The algorithms cited consider one loop at a
 - time. Not suitable for e.g. holes with "islands"

EG 2012 Tutorial: Polygon Mesh Repairing - 14.05.2012

124

Issues

- · Potentially new intersections
- Holes might have complex topologies
 - The algorithms cited consider one loop at a time. Not suitable for e.g. holes with "islands"

Issues

- · Potentially new intersections
- · Holes might have complex topologies
 - The algorithms cited consider one loop at a time. Not suitable for e.g. holes with "islands"

EG 2012 Tutorial: Polygon Mesh Repairing - 14.05.2012

126

EG 2012 Tutorial: Polygon Mesh Repairing - 14.05.2012

Issues

- Potentially new intersections
- Holes might have complex topologies
 - The algorithms cited consider one loop at a time. Not suitable for e.g. holes with "islands"

EG 2012 Tutorial: Polygon Mesh Repairing - 14.05.2012

127

Issues

- Potentially new intersections
- Holes might have complex topologies
 The algorithms cited consider one loop at a time. Not suitable for e.g. holes with "islands"

EG 2012 Tutorial: Polygon Mesh Repairing - 14.05.2012

128

Exploit the volume

- Build a Constrained Delaunay Tetrahedralization
 - Input required to be free of self-intersections, singularities and degeneracies
- Using graph-cut techniques, proper facets of tetrahedra are selected to fill holes with multiple boundaries [PR05]

LOCAL APPROACHES Mesh Completion

• Guarantee: intersection-free output

EG 2012 Tutorial: Polygon Mesh Repairing - 14.05.2012

129

Algorithm	Input requirements	Parameters	Intersectfree
[Bøhn and Wozny 1992]	-	-	
[Mäkelä and Dolenc 1993]	-	-	
[Roth and Wibowoo 1997]	Roughly planar hole boundaries	-	
[Varnuska et al. 2005]	-	-	
[Barequet and Sharir 1995]	-	-	
[Liepa 2003]	-	-	
[Pfeifle and Seidel 1996]	-	-	
[Tekumalla and Cohen 2004]	-	-	х
[Wagner et al. 2003]	-	Sim. Anneal. Param.	х
[Podolak and Rusinkiewicz 2005]	No degen., intersect., singular.	-	х

EG 2012 Tutorial: Polygon Mesh Repairing - 14.05.2012

130

Beyond smooth patches

- Reproducing morphological details can lead to more plausible patches
- *Mesh completion* algorithms attempt to solve this problem
- Copy structure, texture, and features from intact parts

EG 2012 Tutorial: Polygon Mesh Repairing - 14.05.2012

132

from [Sharf et al. 2004

Types of completion algorithms

- Mainly two classes:
 - Modification of template shapes
 - Use available geometry to select a proper "template" from a DB and adapt the latter
 - Creation of the missing geometry
 - Use available geometry to create detailed patches that complete the missing parts

Template-based completion

- Often require user suggestions to start the alignment, e.g. correspondences, feature markers, ...
- Useful just for objects that can be clearly classified into one of few categories
 - human head scans [BV99; KHYS02; BMVS04]
 - bodies [ACP03; ASK*05]
 - teeth [KHYS02; SK02]

EG 2012 Tutorial: Polygon Mesh Repairing - 14.05.2012

EG 2012 Tutorial: Polygon Mesh Repairing - 14.05.2012

133

Template-based completion

EG 2012 Tutorial: Polygon Mesh Repairing - 14.05.2012

135

Inter vs Intra-shape similarities

- The necessary patches can be
 - copied from other parts of the same model [SACO04]
 - Useful if textures and features shall be replicated
 - synthesized according to the geometry of a set of meshes of the same class as the input [PMG*05]
 - To achieve correct global structure and topology

EG 2012 Tutorial: Polygon Mesh Repairing - 14.05.2012

136

134

Patch-based Completion

- Shape similarity measure
 - To find best region or patch to copy into hole region.
- Selection strategy:
 - Evaluate for a set of discrete locations/ orientations/scales [SACO04]
 - Evaluate on a per point basis [BSK05; BF05]

EG 2012 Tutorial: Polygon Mesh Repairing - 14.05.2012

from [Sharf et al. 2004]

137

Photo-based Completion

- Infer information from additional photos
 - Shape-from-shading technique [XGR*06]
 - Photo-consistency measure [BWS*10]

EG 2012 Tutorial: Polygon Mesh Repairing - 14.05.2012

Creation of missing geometry

- Patches can be easily copied, but it's hard to merge them continuously with mesh
- Many algorithms work on point-based representations instead [SACO04; BSK05; BF05; PGSQ06; XZM*07]
 - Need to appropriately sample if input is mesh
 - Need to triangulate the resulting patches

EG 2012 Tutorial: Polygon Mesh Repairing - 14.05.2012

139

141

Summary Table – Mesh Completion

Algorithm	Input requirements	Parameters	Potential new flaws
[Sharf et al. 2004]	- (point-based)	Resolution	(topo. noise, alias.)
[Bendels et al. 2005]	- (point-based)	Scale levels	(topo. noise, alias.)
[Breckon and Fisher 2005]	- (point-based)	Window Size	(topo. noise, alias.)
[Park et al. 2006]	- (point-based)	Resolution	(topo. noise, alias.)
[Xiao et al. 2005]	- (point-based)	Several	(topo. noise, alias.)
[Pauly et al. 2005]	-	Model database, keywords	Degeneracies, intersections
[Xu et al. 2006]	Roughly planar hole boundaries	Calibrated images	Degeneracies, intersections

EG 2012 Tutorial: Polygon Mesh Repairing - 14.05.2012

140

Types of input

- Degeneracies (or near-degeneracies) are often the source of instabilities
- Algorithms that fix them might need to use robust geometric predicates
- Two types of input
 - Tessellated CAD models
 - Digitized models

EG 2012 Tutorial: Polygon Mesh Repairing - 14.05.2012

LOCAL APPROACHES

Degeneracy and Self-Intersection

Removal

EG 2012 Tutorial: Polygon Mesh Repairing - 14.05.2012

142

Slicing CAD models

- Needle-like triangles are simply removed by collapsing the edge opposite to the degenerate corner
- Caps can be split into needles
 - To avoid loops, [BK01] employ a slicing technique
- When done, iterative edge collapses can simplify the model while removing all the needles

143

Slicing technique [BK01]

EG 2012 Tutorial: Polygon Mesh Repairing - 14.05.2012

EG 2012 Tutorial: Polygon Mesh Repairing - 14.05.2012

148

Treating raw digitized meshes

- Here we can count on a rather uniform and dense sampling [Att10]
- Needles can still be removed by collapsing the opposite edge
- Caps can be resolved by "swapping" the edge opposite to the flat corner
- Guaranteed to converge for exact degeneracies, not for near-degeneracies

EG 2012 Tutorial: Polygon Mesh Repairing - 14.05.2012

Manifold meshes

- Keeping the mesh manifold while removing the needles might be impossible for non-exact degeneracies
- E.g. a long and thin cylinder might be tessellated with only triangles with angles below the given threshold

EG 2012 Tutorial: Polygon Mesh Repairing - 14.05.2012

Self-intersections

- Two problems
 - Detection
 - Resolution
- All-with-all intersection tests lead to quadratic complexity → unaffordable
- Need spatial subdivision to reduce the search space

EG 2012 Tutorial: Polygon Mesh Repairing - 14.05.2012

Local remeshing

- [BK05] use a voxel grid to locate selfintersections efficiently
- If a voxel contains intersecting triangles, the surface within the voxel is remeshed
- Same process to locate and fix small gaps
- Modifications occur only near the flaws, thus the approach is local
- Useful to fix tessellated CAD patches with approximated trimming curves

EG 2012 Tutorial: Polygon Mesh Repairing - 14.05.2012

Removing triangles

- In digitized meshes intersecting triangles are small and can be simply removed, and the resulting holes filled
- Approach used in [Att10], where several repairing tasks are performed in sequence

· No parameters are necessary

EG 2012 Tutorial: Polygon Mesh Repairing - 14.05.2012

149

145

147

Robustness issues

- Finite precision may be insufficient to represent the intersection points
- [CK10] use an intermediate BSP representation
 - Fast and robust
- [GHH*03] use arbitrary precision arithmetic
 More precise
 - Slower; requires more resources

Summary Table – Degeneracy and Self-Intersection Removal

Algorithm	fixes:	Input requirements	Parameters	GS	Accuracy
[Botsch and Kobbelt 2001]	D	manifold	Thr. angle		approx.
[Attene 2010]	D, S, H	-	Thr. angle		approx.
[Bischoff and Kobbelt 2005]	S, G	manifold	Tolerance, gap width	х	approx.
[Campen and Kobbelt 2010]	S	no boundary, no degeneracies	-	х	exact
[Granados et al. 2003]	S	-	-	Х	exact

H = holes

G = gaps

EG 2012 Tutorial: Polygon Mesh Repairing - 14.05.2012

LOCAL APPROACHES Sharp Feature Restoration

EG 2012 Tutorial: Polygon Mesh Repairing - 14.05.2012

Interactive approach

- In [KB03], for each corrupted sharp edge, the user draws a "fishbone" structure (spine and orthogonal ribs)
- A tessellation of this structure replaces the original chamfer with a sharp patch
- Useful also to model arbitrary profiles to be swept along the edge

EG 2012 Tutorial: Polygon Mesh Repairing - 14.05.2012

The EdgeSharpener approach

- Detect smooth regions by analyzing the dihedral angle at mesh edges [AFRS05]
- Create sharp features as intersections of planar extrapolations of smooth regions
- Suitable for meshes interpolating points of feature-insensitive sampling patterns

Other automatic approaches

- In their hole-filling algorithm [CC08] include a sharpness-dependent filter to reconstruct features
- In [Wan06] both sharp features and smooth blends between smooth regions are reconstructed
 - To differentiate between these two cases, the user is required to specify a parameter

EG 2012 Tutorial: Polygon Mesh Repairing - 14.05.2012

155

151

153

Newly-introduced flaws

- All the methods discussed "add" or "remove" material" to reconstruct the features → potential self-intersections
- The EdgeSharpener method might produce degenerate triangles while splitting the chamfers

Chamfe

160

Summary Table – Sharp Features

Algorithm	Input requirements	Parameters	Potential new flaws
[Kobbelt and Botsch 2003]	manifold	interactive	self-intersections
[Attene et al. 2005]	manifold, no degeneracies	-	self-intersections, degeneracies
[Chen and Cheng 2008]	manifold, no degeneracies	-	self-intersections
[Wang 2006]	no noise, no degeneracies	two thresholds	self-intersections

LOCAL APPROACHES Mesh Denoising

EG 2012 Tutorial: Polygon Mesh Repairing - 14.05.2012

157

EG 2012 Tutorial: Polygon Mesh Repairing - 14.05.2012

Laplacian smoothing

- Iterative algorithm
- For each iteration, compute the eventual position of each vertex as the center of mass of the neighbors
- Tends to "shrink" the shape

EG 2012 Tutorial: Polygon Mesh Repairing - 14.05.2012

Non-shrinking methods

- λ/μ algorithm [Tau95] a modification of the Laplacian smoothing
- For each iteration, two sub-iterations are performed
 - One inward diffusion, controlled by $\boldsymbol{\lambda}$
 - One outward diffusion, controlled by $\boldsymbol{\mu}$
- Alternatively, [VMM99] push vertices toward original surface after each Laplacian iteration

EG 2012 Tutorial: Polygon Mesh Repairing - 14.05.2012

Morphology-aware denoising

- Previous algorithms smooth everything
- If morphological features are important, [FDCO03] propose to use a bilateral filter as done in image processing
 - User need to set two parameters
- [JDD03] propose an alternative approach which is non-iterative
 - Can treat polygon soups as well

EG 2012 Tutorial: Polygon Mesh Repairing - 14.05.2012

161

159

Denoising and sharpening

- In both [HP04] and [SRML07], smooth regions are denoised while potential sharp edges are actually sharpened
- For the case of mechanical/man-made objects, [FYP10] propose a specific approach that is more accurate

EG 2012 Tutorial: Polygon Mesh Repairing - 14.05.2012

Newly introduced flaws

- All the described methods move vertices to new positions
- Some of them reconstruct sharp features, thus add material to the object
- Typically, no controls are performed to check that these modifications do not produce self-intersections or degeneracies

```
EG 2012 Tutorial: Polygon Mesh Repairing - 14.05.2012
```

163

Summary table - Denoising

Algorithm	Properties	Input requirements	Parameters
[Taubin 1995]	Ν	closed manifold	λ, μ, n
[Fleishman et al. 2003]	N, F	manifold	σ_c, σ_s, n
[Jones et al. 2003]	N, F	-	σ_noise
[Hildebrandt and Polthier 2004]	N, S	manifold	λ, r
[Fan et al. 2010]	N, S	manifold	-n

N = noise removal F = feature preservation S = feature sharpening All these methods might introduce degeneracies and self-intersections

EG 2012 Tutorial: Polygon Mesh Repairing - 14.05.2012

164

Types of approaches

Based on prior knowledge of the topology
e.g. Reconstruction of human cortex from MRI [XPR*02]: known to be genus 0
Involving user interaction
[SLS*07] – Ask the user to resolve possible ambiguities
Based on threshold parameters
[GW04] – Remove all handles smaller than a threshold size

Genus-0 surfaces

- [FLD01] inflate the input mesh (brain cortex) by alternating steps of Laplacian smoothing and radial projection (spherical parameteriz.)
- Folds are replaced by disk-like patches, and the parameterization is reversed
- Other methods: [SL01], [HXBNP02] (genus-N)

EG 2012 Tutorial: Polygon Mesh Repairing - 14.05.2012

167

Removing small handles

- [ESV97] roll a sphere of radius α over the mesh and fill up all the regions that are not accessible to the sphere
- This removes tiny handles and tunnels, but also spoils concave edges and is unsuitable for meshes with boundary
- Appears to be extremely difficult to implement; robustness issues may arise

Topological Noise Removal

- [GW04] use a wavefront traversal to find if the mesh has local handles or tunnels (user-defined size)
- Non-separating cuts are identified and the mesh is cut and sealed along them
- [AF06] propose an accelerated method for digitized meshes which exploits wavefront splitting points

EG 2012 Tutorial: Polygon Mesh Repairing - 14.05.2012

Newly introduced flaws

- All these methods add or remove material
- Typically, no checks are performed that these modifications do not produce selfintersections
- Other algorithms exploit explicit definition of the volume to avoid this problem
 - If you have a mesh, voxelization modifies it everywhere, so these must be considered global approaches

EG 2012 Tutorial: Polygon Mesh Repairing - 14.05.2012

Voxel-based topology correction

- [WHDS04] use Reeb graphs to locate handles in voxelized shapes
- If handle is small (measured by short nonseparating cycles), volumetric data is processed to remove it
- If model has numerous handles, topologysensitive carving [SV03] is faster though less precise

EG 2012 Tutorial: Polygon Mesh Repairing - 14.05.2012

171

169

Voxel-based topology correction (2)

- For huge voxelizations (e.g. 4096^3), [ZJH07] use discrete curve skeletons
- [JZH07] make it possible to actually edit the topology of an object so as to make it equivalent to that of a given target shape

EG 2012 Tutorial: Polygon Mesh Repairing - 14.05.2012

172

170

Algorithm Parameters Potential new flaws Input requirem. [El-Sana and Varshney 1997] no boundary radius self-intersect. aliasing [Guskov and Wood 2001] oriented manifold threshold self-intersections [Fischl et al. 2001] oriented manifold (→ 0 handles) self-intersections [Attene and Falcidieno 2006] threshold self-intersections [Shattuk and Lehay 2001] no large holes $(\rightarrow 0 \text{ handles})$ (aliasing) [Han et al. 2002] no large holes (→ 0 handles) (aliasing) [Szymczak and Vanderhyde 2003] no large holes threshold (aliasing) [Wood et al. 2004] no large holes threshold (aliasing) [Zhou et al. 2007] no large holes two thresholds (aliasing)

no large holes

Summary table - topology correction

EG 2012 Tutorial: Polygon Mesh Repairing - 14.05.2012

[Ju et al. 2007]

173

(aliasing)

target "shape

GLOBAL APPROACHES

- Approaches discussed so far are local
 remove single defects (holes, singularities, selfintersections, ...) mainly individually.
- Absence of individual defects not required for their own sake:
 - part of greater requirement for manifoldness.
- Achieving this by sequential local operations is extremely difficult:
 - new defects can be introduced
 - ambiguities are hard to resolve in a local manner.

EG 2012 Tutorial: Polygon Mesh Repairing - 14.05.2012

- Global repair methods can be advantageous in this regard.
 - consider mutual relation of defects for better ambiguity arbitration.
 - possibly employ intermediate volumetric representation:
 - Guarantees that the result is a manifold surface of some solid.
 - Disadvantage: often complete conversion and remeshing necessary → invasive, loss of detail

EG 2012 Tutorial: Polygon Mesh Repairing - 14.05.2012

175

GLOBAL APPROACHES

- Intermediate volumetric representation

 → the repair task boils down to deciding which
 parts of the volume are inside and outside.
- We can group the global methods by how this decision is performed and by their input requirements
 - Input without significant gaps and holes
 - Input with normal or orientation information
 - Arbitrary input

EG 2012 Tutorial: Polygon Mesh Repairing - 14.05.2012

176

GLOBAL APPROACHES

- Input without significant gaps and holes
 - Rasterization into voxel grid representation,
 - Determination of inside/outside volume by flood-filling,
 - from given seed points [OSD97]
 - from a point at infinity [ABA02]
 - Reconversion to polygon mesh by contouring.
 - Not possible for gaps or holes beyond voxel size.

EG 2012 Tutorial: Polygon Mesh Repairing - 14.05.2012

177

Input mesh

EG 2012 Tutorial: Polygon Mesh Repairing - 14.05.2012

178

GLOBAL APPROACHES

EG 2012 Tutorial: Polygon Mesh Repairing - 14.05.2012

GLOBAL APPROACHES

EG 2012 Tutorial: Polygon Mesh Repairing - 14.05.2012

GLOBAL APPROACHES

GLOBAL APPROACHES

GLOBAL APPROACHES

GLOBAL APPROACHES

EG 2012 Tutorial: Polygon Mesh Repairing - 14.05.2012

GLOBAL APPROACHES

EG 2012 Tutorial: Polygon Mesh Repairing - 14.05.2012

GLOBAL APPROACHES

GLOBAL APPROACHES

GLOBAL APPROACHES

GLOBAL APPROACHES

GLOBAL APPROACHES

Internal void

EG 2012 Tutorial: Polygon Mesh Repairing - 14.05.2012

GLOBAL APPROACHES

EG 2012 Tutorial: Polygon Mesh Repairing - 14.05.2012

194

GLOBAL APPROACHES

GLOBAL APPROACHES

GLOBAL APPROACHES

EG 2012 Tutorial: Polygon Mesh Repairing - 14.05.2012

GLOBAL APPROACHES

EG 2012 Tutorial: Polygon Mesh Repairing - 14.05.2012

GLOBAL APPROACHES

GLOBAL APPROACHES

- Input without significant gaps and holes
 - Rasterization into voxel grid representation,
 - Determination of inside/outside volume by flood-filling,
 - from given seed points [OSD97]
 - from a point at infinity [ABA02]
 - Reconversion to polygon mesh by contouring.
 - Not possible for gaps or holes beyond voxel size.

EG 2012 Tutorial: Polygon Mesh Repairing - 14.05.2012

GLOBAL APPROACHES

GLOBAL APPROACHES

GLOBAL APPROACHES

EG 2012 Tutorial: Polygon Mesh Repairing - 14.05.2012

GLOBAL APPROACHES

EG 2012 Tutorial: Polygon Mesh Repairing - 14.05.2012

EG 2012 Tutorial: Polygon Mesh Repairing - 14.05.2012

2	0	Ş

GLOBAL APPROACHES

GLOBAL APPROACHES

EG 2012 Tutorial: Polygon Mesh Repairing - 14.05.2012

from [Davis et al. 2002]

EG 2012 Tutorial: Polygon Mesh Repairing - 14.05.2012

217

EG 2012 Tutorial: Polygon Mesh Repairing - 14.05.2012

221

EG 2012 Tutorial: Polygon Mesh Repairing - 14.05.2012

EG 2012 Tutorial: Polygon Mesh Repairing - 14.05.2012

GLOBAL APPROACHES

EG 2012 Tutorial: Polygon Mesh Repairing - 14.05.2012

GLOBAL APPROACHES

GLOBAL APPROACHES

GLOBAL APPROACHES

GLOBAL APPROACHES

EG 2012 Tutorial: Polygon Mesh Repairing - 14.05.2012

233

GLOBAL APPROACHES

GLOBAL APPROACHES

GLOBAL APPROACHES

GLOBAL APPROACHES

GLOBAL APPROACHES

EG 2012 Tutorial: Polygon Mesh Repairing - 14.05.2012

GLOBAL APPROACHES

- Arbitrary Input
 - Various inside/outside decision principles:
 - Parity Counting
 - Ray Stabbing
 - Boundary Loop Patching
 - Morphology & Flooding
 - Graph Cutting
 - Membrane Shrinking
 - Optimization of global consistency functional

EG 2012 Tutorial: Polygon Mesh Repairing - 14.05.2012

- Parity Counting / Ray Stabbing
 - Consider intersections of rays with the object [NT03].
 - Combine findings from multiple ray directions to be less affected by holes and larger gaps [NT03].

GLOBAL APPROACHES

EG 2012 Tutorial: Polygon Mesh Repairing - 14.05.2012

241

GLOBAL APPROACHES

GLOBAL APPROACHES

GLOBAL APPROACHES

EG 2012 Tutorial: Polygon Mesh Repairing - 14.05.2012

245

GLOBAL APPROACHES

EG 2012 Tutorial: Polygon Mesh Repairing - 14.05.2012

GLOBAL APPROACHES

GLOBAL APPROACHES

GLOBAL APPROACHES

GLOBAL APPROACHES

EG 2012 Tutorial: Polygon Mesh Repairing - 14.05.2012

251

GLOBAL APPROACHES

EG 2012 Tutorial: Polygon Mesh Repairing - 14.05.2012

GLOBAL APPROACHES

- Boundary Loop Patching
 - Detect holes and islands in rasterized version
 - Add patches (using XOR to prevent intersections)

EG 2012 Tutorial: Polygon Mesh Repairing - 14.05.2012

254

GLOBAL APPROACHES

GLOBAL APPROACHES

GLOBAL APPROACHES

EG 2012 Tutorial: Polygon Mesh Repairing - 14.05.2012

257

GLOBAL APPROACHES

EG 2012 Tutorial: Polygon Mesh Repairing - 14.05.2012

GLOBAL APPROACHES

260

GLOBAL APPROACHES

GLOBAL APPROACHES

GLOBAL APPROACHES

EG 2012 Tutorial: Polygon Mesh Repairing - 14.05.2012

263

GLOBAL APPROACHES

EG 2012 Tutorial: Polygon Mesh Repairing - 14.05.2012

GLOBAL APPROACHES

GLOBAL APPROACHES

- Morphology
 - Does not rely on explicit hole boundary loop detection.
 - Closing operations to fill holes and gaps, flood-filling to determine outside [BPK05].
 - Improve final surface smoothness using graph-cut [HK06].

267

EG 2012 Tutorial: Polygon Mesh Repairing - 14.05.2012

GLOBAL APPROACHES

268

GLOBAL APPROACHES

EG 2012 Tutorial: Polygon Mesh Repairing - 14.05.2012

EG 2012 Tutorial: Polygon Mesh Repairing - 14.05.2012

GLOBAL APPROACHES

EG 2012 Tutorial: Polygon Mesh Repairing - 14.05.2012

GLOBAL APPROACHES

GLOBAL APPROACHES

GLOBAL APPROACHES

GLOBAL APPROACHES

EG 2012 Tutorial: Polygon Mesh Repairing - 14.05.2012

275

GLOBAL APPROACHES

GLOBAL APPROACHES

GLOBAL APPROACHES

GLOBAL APPROACHES

GLOBAL APPROACHES

EG 2012 Tutorial: Polygon Mesh Repairing - 14.05.2012

281

GLOBAL APPROACHES

EG 2012 Tutorial: Polygon Mesh Repairing - 14.05.2012

GLOBAL APPROACHES

GLOBAL APPROACHES

GLOBAL APPROACHES

GLOBAL APPROACHES

EG 2012 Tutorial: Polygon Mesh Repairing - 14.05.2012

287

GLOBAL APPROACHES

GLOBAL APPROACHES

GLOBAL APPROACHES

GLOBAL APPROACHES

GLOBAL APPROACHES

EG 2012 Tutorial: Polygon Mesh Repairing - 14.05.2012

293

GLOBAL APPROACHES

- Global Optimization [MF97]
 - Surface-aligned volumetric representation (BSP-based)
 - Determine optimal inside/outside labels for cells such that the output surface maximally conforms with the (partial) input.
 - The geometry of the resulting hole-filling patches is rather random and can be unpleasing in case of larger holes.

EG 2012 Tutorial: Polygon Mesh Repairing - 14.05.2012

GLOBAL APPROACHES

GLOBAL APPROACHES

GLOBAL APPROACHES

EG 2012 Tutorial: Polygon Mesh Repairing - 14.05.2012

GLOBAL APPROACHES

299

GLOBAL APPROACHES

EG 2012 Tutorial: Polygon Mesh Repairing - 14.05.2012

GLOBAL APPROACHES

GLOBAL APPROACHES Extract pos/neg, interface (MF97)

GLOBAL APPROACHES

GLOBAL APPROACHES

Possible variations:

- Smoothing of hole fillings
 constrained to cells to avoid intersections
- Local cell decomposition at holes
 Requires absence of intersections and singularities in input
- Incorporation of user constraints
 to interactively correct output topology

EG 2012 Tutorial: Polygon Mesh Repairing - 14.05.2012

305

Summary table – global approaches

Algorithm	Input requirem.	Signing method
[Oomes et al. 1997]	no significant holes/gaps	flood-filling
[Andújar et al. 2002]	no significant holes/gaps	flood-filling
[Curless and Levoy 1996]	oriented range meshes	line-of-sight
[Furukawa et al. 2007]	oriented range meshes	line-of-sight/light
[Davis et al. 2002]	oriented	normals + diffusion
[Sagawa and Ikeuchi 2008]	oriented	normals + area minimization
[Nooruddin and Turk 2003]	-	parity counting, ray stabbing
[Ju 2004]	(no significant gaps)	hole patching + parity counting
[Bischoff et al. 2005]	-	morphology + flood-filling
[Hornung and Kobbelt 2006]	-	morphology + graph-cut
[Murali and Funkhouser 1997]	(no significant holes)	global sign optimization

EG 2012 Tutorial: Polygon Mesh Repairing - 14.05.2012

REPAIRING WORKFLOWS An example for raw digitized meshes		 We can assume that: Samples are rather uniformly spaced Model is densely sampled (opposed to sparse tessellated NURBS) 	
		 What is the typical input? An indexed face set, possibly non manifold, self- intersecting, with degenerate faces, holes, topological noise, 	
		 How do I fix all these defects? Global approach -> unnenessary distortion also where the model has no defects (defects are sparse !) Filters out sharp features Low distortion requires too many triangles 	
EG 2012 Tutorial: Polygon Mesh Repairing - 14.05.2012	307	EG 2012 Tutorial: Polygon Mesh Repairing - 14.05.2012 308	

A repairing pipeline

- Sequence of local approaches
- Assumes that the input is a raw digitized mesh
- Creates a valid watertight polyhedral surface
- Works in two successive phases:
 - Topology reconstruction
 - Geometry correction

EG 2012 Tutorial: Polygon Mesh Repairing - 14.05.2012

309

Topology reconstruction: step 1

Raw digitized meshes

- · Convert the indexed face set to a simplicial complex
- 1) Triangulate non-triangular facets while loading (only simply connected, but this is normal in raw digitized meshes)
- Create a (initially empty) list L of edges and, for each triangle <i,j,k> insert in L its three bounding edges <i,j>, <j,k> and <k,i>
- 3) Sort L lexicographically, i.e. if $e1 = \langle i,j \rangle$ and $e2 = \langle k,n \rangle$ $e1 \leq e2$ iff i < k OR (i = k AND $j \leq n$)
- 4) Two triangles are adjacent iff they induce consecutive edges in the sorted list L.

EG 2012 Tutorial: Polygon Mesh Repairing - 14.05.2012

310

Topology reconstruction: step 2

- Convert the simplicial complex to a valid triangle mesh (i.e. manifold and oriented)
- Run the cut&stitch algorithm (Gueziec et al., 2001)
 Duplicate singular vertices and edges
- 2) Orient the mesh consistently
 - Select a 'seed' triangle (e.g. the topmost one) and orient it
 - 2) Propagate the orientation to neighboring triangles
 - 3) Cut the mesh at non-consistently oriented pairs of triangles

311

Topology reconstruction: step 3

- Convert the manifold and oriented mesh to a single watertight mesh
- 1) If the mesh could not be oriented (i.e. cuts were necessary) this phase cannot take place -> failure
- Otherwise, delete all the smallest connected components and fill the holes using Liepa's algorithm
 - Smallest components are computed by counting their triangles (we assumed that the sampling is rather uniform)
 - 2) Smallest components include possible 'isles'
 - The patches used to fill the holes may intersect other parts of the surface

EG 2012 Tutorial: Polygon Mesh Repairing - 14.05.2012

EG 2012 Tutorial: Polygon Mesh Repairing - 14.05.2012

Simplicial Neighborhoods

- For the "geometry correction" phase, we make use of the notion of simplicial neighborhood
- The simplicial neighborhood N(t) is the set of all the simplexes which share at least a vertex with the triangle 't'
- 2) The i'th order simplicial neighborhood Ni(t) is defined as N(N(...N(N(t))...)), with 'i' nested levels

EG 2012 Tutorial: Polygon Mesh Repairing - 14.05.2012

313

Geometry correction: step 1

Geometry correction: step 2

EG 2012 Tutorial: Polygon Mesh Repairing - 14.05.2012

Geometry correction: iteration

- While patching holes to remove selfintersections, new degenerate or nearly degenerate triangles may appear
- So, after step 2 we check for degeneracies and, if any, we repeat steps 1 and 2, until no more degeneracies are left
- This is guaranteed to converge only when exact degeneracies are removed

EG 2012 Tutorial: Polygon Mesh Repairing - 14.05.2012

316

Example

EG 2012 Tutorial: Polygon Mesh Repairing - 14.05.2012

315

"Pathological" cases

- The method is not guaranteed to succeed in all the cases
- We have run it on hundreds of digitized models, it never failed -> good heuristics
- We had to synthesize a specific model to make it fail

EG 2012 Tutorial: Polygon Mesh Repairing - 14.05.2012

Applications

• The fixed model can be converted to an explicit solid (i.e. a tetrahedral mesh). This is required e.g. for simulation.

EG 2012 Tutorial: Polygon Mesh Repairing - 14.05.2012

319

DISCUSSION & OUTLOOK

- Widely varying hardness of repair tasks depending on the defects involved.
 - e.g. consistently orienting faces is easily formalized and solved,
 - but filling complex holes or plausibly removing intersections requires a non-trivial approach and intricate case-by-case study due to ambiguities.
- Despite the vast number of existing techniques, there is room for future investigation, especially for the *hard* cases.

EG 2012 Tutorial: Polygon Mesh Repairing - 14.05.2012

DISCUSSION & OUTLOOK

 Minimally Invasive, but Guaranteeing and Global
 Hybrid methods that are as accurate as local methods but ensure correctness like global ones.

DISCUSSION & OUTLOOK

- Minimally Invasive, but Guaranteeing and Global
 Hybrid methods that are as accurate as local methods but ensure correctness like global ones.
- High-Level Interaction incorporating Meta-Knowledge
 - Missing data always implies ill-posedness, automatic heuristics have limits → exploit qualified knowledge of the user through intuitive interaction metaphors.

321

EG 2012 Tutorial: Polygon Mesh Repairing - 14.05.2012

322

320

DISCUSSION & OUTLOOK

EG 2012 Tutorial: Polygon Mesh Repairing - 14.05.2012

- Minimally Invasive, but Guaranteeing and Global
 Hybrid methods that are as accurate as local methods but ensure correctness like global ones.
- High-Level Interaction incorporating Meta-Knowledge

EG 2012 Tutorial: Polygon Mesh Repairing - 14.05.2012

323

DISCUSSION & OUTLOOK

- Minimally Invasive, but Guaranteeing and Global
 Hybrid methods that are as accurate as local methods but ensure correctness like global ones.
- High-Level Interaction incorporating Meta-Knowledge
 - Missing data always implies ill-posedness, automatic heuristics have limits → exploit qualified knowledge of the user through intuitive interaction metaphors.
- Vertical Integration to Repair Workflows
 - Local methods often treat one defect type
 → suitable sequencing of methods necessary.

EG 2012 Tutorial: Polygon Mesh Repairing - 14.05.2012

AVAILABLE REPAIR TOOLS

- Several repair tools are freely available
 - Implementing one or multiple of the covered methods.
- Up-to-date information and references to these tools are available at:

http://www.meshrepair.org

EG 2012 Tutorial: Polygon Mesh Repairing - 14.05.2012

325

ACKNOWLEDGEMENTS

- Support to this work was given by:
 EU FP7 project VISIONAIR (contract N. 262044)
 - CNR project "Multimodal and Multidimensional Content & Media" – activity N. ICT.P10.009
 - MIUR-PRIN Project N. 2009B3SAFK_002
 - DFG Cluster of Excellence UMIC (German Research Foundation grant DFG EXC 89)

EG 2012 Tutorial: Polygon Mesh Repairing - 14.05.2012